Lunch Discussion: FASTMath Synergistic Activities
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Synergistic activities in the FASTMath proposal

Numerical optimization and uncertainty quantification (Habib Najm)

Time integrators and linear solvers with numerical optimization and
uncertainty quantification (Hong Zhang, poster, see slide)

Unstructured mesh and uncertainty quantification (Onkar Sahni,
poster, see slide)

Data analytics and numerical optimization (Todd Munson, see
slide)

Data analytics and unstructured mesh (Rick Archibald)
Time integrators and structured mesh (John Loffeld, poster)
Linear solvers and structured mesh (Ulrike Yang, poster)
Linear solvers and eigensolvers (Mathias Jacquelin, poster)
Software strategy (Ann Almgren, see RAPIDS session)



Unstructured Meshes in UQ Processes (Onkar Sahni, RPI)

" Unstructured meshes in UQ processes
must address the following needs:

* Reliable computation at UQ samples
with control of mesh-based error Variance

* Multi-fidelity UQ employing multi-
resolution meshes and models

* Flexible stochastic representation of
input and output data
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PETSc/TAO Optimization Solver
with Joint-Sparsity Regularizer

Spectral Bands

= Developed a solver for composite optimization with a smooth term
and a non-smooth joint-sparse regularizer term
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e Construct a smooth approximation and apply the Gauss-
Newton method

* Provides flexibility to include joint sparsity with a dictionary
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Discrete Adjoint Time-domain Sensitivity Analysis
Capability in PETSc

= Calculating gradients is difficult and computationally expensive for PDEs

= We have developed first-order and second-order discrete adjoint
sensitivity analysis capability that can

e Avoid full differentiation of the code (traditional AD)
e Avoid deriving the adjoint PDE (continuous adjoint)

= We have been working with the optimization team to use adjoint to
efficiently solve PDE-constrained optimization problems
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What synergistic activities are ongoing?
]

= What other synergistic activities are we pursuing?

= What are "best practices” that enabled synergistic
activities”?



What opportunities for further synergistic activities exist?

= What do people need from other parts of the FASTMath
institute (e.qg., "help! | need an eigensolver")?

= What are road-blocks to synergistic activities and how
can we address them?



